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Pulsars emit coherently in radio from polar cap

• Pulsars emit coherently in radio from
polar cap

• Many aspects of this emission are
unexplained

Image source: NASA
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Radio luminosity is independent of spindown luminosity

• Radio luminosity 𝐿! has
magnitude

• Roughly independent of
spindown luminosity 𝐿"

Image source: Szary et al., ApJ 2014

log 𝐿! [erg s"#]

lo
g
𝐿 $

[e
rg
s"

# ]

31

27

29

30 3834

𝐿$ ∼ 10%& − 10'# erg s-1



4Tolman |

Pulsar radio spectrum is 𝑆! ∼ 𝜔"#.%±#.'

• Typical radio spectrum across several
pulsar observations is [Bates et al.
MNRAS 2013]:

Image source: Malofeev et al.,  A&A 1994
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Pair discharge in polar cap may create radio emission
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• Polar cap has strong inductive E field which
creates pair discharge:

1. E field accelerates e- from surface to 𝛾 ∼ 10&
2. Primary e- curvature radiate gamma rays
3. Gamma rays are absorbed in magnetic field
4. QED process continually creates lower

energy 𝛾 ∼ 10% pairs

• Continuously created 𝛾 ∼ 10% pairs screen E

• Set up waves which become radio emission
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• Screening of a vacuum electric field by
continuous creation of 𝛾 ∼ 10) pairs can
be seen in 1D PIC simulations at right

• Our work: analytical models of this
screening process, used to explain
luminosity + spectrum

We analytically study screening, explain 𝐿( , 𝑆!
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1. Nonlinear waves, strong
damping: new pairs fully reversed
by E field

2. Linear waves, weak
damping: new pairs not reversed
by E field

E field damping has two phases: nonlinear and linear
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1. Nonlinear waves, strong
damping: new pairs fully reversed
by E field

2. Linear waves, weak
damping: new pairs not reversed
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Nonlinear stage marked by strong damping

• Nonlinear stage marked by strong damping, 
governed by:

• Spikes in frequency cause damping of E

• Spikes caused by acceleration of pairs 
added near zeros of E 

• See paper for much more

𝐸(𝑡)

𝒆!

𝒆"

𝜕*+
) )𝐸 + ,𝜔) )𝐸 = 0

,𝜔) ∝ /𝑛,
1
𝛾-

Quantity Definition
𝑡̂ normalized time

*𝐸 normalized electric 
field

+𝜔 normalized relativistic 
plasma frequency

-𝑛" normalized positron 
density

Normalized time

Normalized time

N
or

m
al

iz
ed

 
fre

qu
en

cy

N
or

m
al

iz
ed

 e
le

ct
ric

 fi
el

d

0

2.5 x
10-4



14Tolman |

• Strong damping stops when change in pair 𝛾 from wave cannot reverse injected pairs

• 𝑐𝐸%𝜋𝑟()% ≈ 10%* erg s"#: consistent with observed radio luminosity

• Independent of spindown luminosity

Transition from strong to weak damping gives luminosity

𝑒 𝐸
𝑚 𝜔𝑐

∼ 10( 𝐸 ∼ 10) G
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Weak damping in linear stage sets pulsar spectrum

• After transition, system enters linear stage 
during which waves escape as radio emission

• Across polar cap, emission escapes at 
different times with different )𝐸, ,𝜔

• Relationship between )𝐸, ,𝜔 gives spectrum

• )𝐸 , ,𝜔 governed by

• Change in ,𝜔 is slow compared to ,𝜔

• Applying WKB method gives relationship

• Compare to 
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Conclusions

• Pulsar radio emission may be created by electric field screening in polar cap

• Radio luminosity can be understood as transition from nonlinear to linear physics

• Radio spectrum can be understood from linear damping

Based on Tolman, Philippov, and Timokhin, In preparation, available shortly on arXiv
For more details, attend Princeton Astroplasmas seminar Dec. 3rd or 10th (date 

uncertain)
Slides available at elizabethtolman.com

Acknowledgements: I am indebted to an extremely helpful comment on Math StackExchange from user ``DinosaurEgg." This research made use of the ``Tristan-MP v2" 
particle-in-cell code. We thank Peter Catto, Lev Arzamasskiy, Carolyn Raithel, and Fabio Cruz for helpful conversations.  Hayk Hakobyan provided expert advice on 

code usage. A.P. was supported by NSF grant no. PHY-2010145. A.T. was supported by the grant 2019/35/B/ST9/03013 of the Polish
National Science Centre. E.T. was supported by the W. M. Keck Foundation Fund at the Institute for Advanced Study.


