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Multiple upcoming tokamak experiments will run DT plasmas

Rendering of the SPARC tokamak
Source: CFS/MIT-PSFC - CAD Rendering by T. 

Henderson

The Joint European Torus (JET) chamber
Source: CCFE

Rendering of the ITER tokamak
Source: ITER Organization, http://www.iter.org/ 

• A series of upcoming tokamak experiments plan to run with DT fuel
• JET DT campaign
• SPARC
• ITER
• First DT experiments since the 1990’s
• (with exception of trace tritium experiments)
• Exciting plasma physics motivates new attention to relevant theory
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Alpha physics is novel part of next-generation DT tokamaks

• One novel, important part of DT tokamak physics is alpha
particle behavior

• Alphas heat bulk plasma, help maintain its temperature

• For SPARC primary reference plasma: 𝑃! ≈ 28 MW ,
𝑃"#,%&'()*+ + 𝑃&,-.% ≈ 12.8 MW [Creely et al. APS DPP 2020]

• Alphas can interact with perturbations to tokamak electric
and magnetic fields, causing transport
• Transport can modify heat deposition
• Loss can degrade performance, damage device
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Outline

• Unperturbed alpha distribution and the perturbations that affect it

• Drift kinetic equation governing transport

• Evaluation of transport

• Strength of TAE transport



Unperturbed alpha distribution and the 
perturbations that affect it
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Unperturbed alpha distribution is peaked in core

• Unperturbed alpha population given by slowing down distribution:

• Many alphas toward core; few towards edge

Parameter	definitions
𝑆!"#:	fusion	rate

𝐻(v − v$):	Heaviside	step	function
v% :	critical	speed

𝜏# ∝ 𝑇&
!
"/𝑛&: slowing	down	time

𝑓! v, 𝜓 =
𝑆"#$ 𝜓 𝜏$ 𝜓 𝐻(v − v!)

4 𝜋 v% + v&%(𝜓)

𝑆"#$𝜏$ = 𝑛'𝑛( 𝜎v 𝜏$ ∝ 𝑛𝑇)/+

𝑓 !
/𝑓
!(
𝜓
=
0)

⁄𝜓 𝜓"

High bulk 𝑛, 𝑇
gives high alpha 

density
Low bulk 𝑛, 𝑇
gives low alpha 

density
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Interaction of alphas and perturbations leads to transport

• Tokamak fields experience a variety of
perturbations
• Ripple
• MHD modes (Alfvén eigenmodes, NTMs, etc.)
• RMP coils

• These perturbations create perturbed:
• Alpha distribution: 𝑓A
• Alpha radial velocity: vB

• Leads to transport of alphas from core to edge
• Excessive transport could lead to loss of
necessary alpha heat or to damage to device 𝑓 !

/𝑓
!(
𝜓
=
0)

⁄𝜓 𝜓"

Schematic flattening 
due to anomalous 
alpha transport

[Image sources: Mumgaard APS DPP 2018 + Snicker et al. NF 2013]
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• Tokamaks have discrete toroidal field coils (≈ 18)

• Discrete coils yield a small, stationary perturbation
to tokamak magnetic field

This presentation uses ripple as one example

[Image source: Mumgaard APS DPP 2018]
𝐵, ≈ 𝐵- 𝜓 cos 𝑛𝜁

𝝍

𝜻
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• In a tokamak, Alfvén waves can exist as eigenmodes (AEs)

• AEs exist at a set of discrete frequencies
• The TAE exists at 𝜔(./ =

0!
+12

The toroidal Alfvén eigenmode is another example

Image credit: Heidbrink APS 
2007

𝝑𝝍

𝜻

𝐵, =:
3

𝐵3-4 𝜓 cos 𝑛𝜁 − 𝑚 𝜗 − 𝜔𝑡

𝐸, =:
3

𝐸3-4 𝜓 cos 𝑛𝜁 − 𝑚 𝜗 − 𝜔𝑡

Fr
eq

ue
nc

y 
[v
'
/𝑅

], 
m

od
e 

am
pl

itu
de

 [
A

U
]

TAE gap

Continuum spectrum

• AEs driven by spatial gradient of alpha population 
through resonance with alpha orbits
• Resonant speed depends on bounce harmonic and particle 

pitch angle
• Increases as Alfvén speed increases
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We develop drift kinetic theory of transport

• Theory of alpha transport by perturbations focuses on single alpha trajectories

• Codes used to study alpha distribution

We develop a drift kinetic theory for 𝑫, the alpha diffusivity caused by a 
tokamak perturbation, as a function of perturbation characteristics

•Apply theory to ripple (not very interesting) and TAE (interesting)



Drift kinetic equation governing transport 
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• Ripple has a magnetic field perturbation
• TAE includes magnetic field and electric field perturbations

Perturbations have E and B field perturbations

Magnetic perturbation is given by: 

𝐵, = 𝐵3-4𝑒5(- 783984:)𝑒
5∫ =>

?"
2@#

Electric potential perturbation is given by:

Φ! = Φ"#$ 𝐵"#$ 𝑒%(# '(")($*)𝑒
%∫ -.

/!
01"

Amplitude
Wave 
phase

Radial 
variation 

Image credit: Heidbrink APS 
2007

𝝑𝝍

𝜻
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• Corresponding perturbation to alpha distribution function is created

• A radial perturbation to the alpha particle velocity, vA , is created
• Results from drifts and changed B field direction

• Transport determined by product of ℎ and vA

Magnetic perturbation is given by: 

𝐵, = 𝐵3-4𝑒5(- 783984:)𝑒
5∫ =>

?"
2@#

Electric potential perturbation is given by:

Φ! = Φ"#$ 𝐵"#$ 𝑒%(# '(")($*)𝑒
%∫ -.

/!
01"

Field perturbations perturb alpha distribution, velocity

𝑓! =
𝑍𝑒 Φ!
𝑀

𝜕𝑓"
𝜕ℰ

+ ℎ(𝜗)𝑒#[% ('() *)(,-]𝑒
#∫ 01

2!
34"

Adiabatic response (ℰ is energy) Response that causes transport

Image credit: Heidbrink APS 
2007

𝝑𝝍

𝜻
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Image credit: Heidbrink APS 
2007

Multiple perturbations work together to cause transport

• In realistic tokamak, multiple perturbations and
multiple poloidal harmonics per perturbation

• Perturbations at different radial locations work
together to cause transport across cross section

• For perturbations with significant radial overlap:

𝑛 ≠ 𝑛′ 𝑛 = 𝑛2

• ℎ from one perturbation does 
not couple to v3 from other
• Diffusion is superimposed

• Transport couples for similar 𝑚
• See discussion in paper
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Drift kinetic equation models transport, gives h

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(

The perturbed drift kinetic equation used to find 𝒉 is: 
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Drift kinetic equation models transport, gives h
The perturbed drift kinetic equation used to find 𝒉 is: 

Streaming of unperturbed alpha 
orbit along magnetic field

[Image source: 
Kadomtsev and Pogutse

1971]

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(
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Drift kinetic equation models transport, gives h
The perturbed drift kinetic equation used to find 𝒉 is: 

Perturbation frequency

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(
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Drift kinetic equation models transport, gives h
The perturbed drift kinetic equation used to find 𝒉 is: 

Toroidal mode number

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(
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Drift kinetic equation models transport, gives h
The perturbed drift kinetic equation used to find 𝒉 is: 

[Image source: 
Kadomtsev and Pogutse

1971]

Drift of unperturbed alpha orbit in 
flux surface

𝜔4 = v- 6 𝛻 𝜁 − 𝑞 𝜗

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(
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Drift kinetic equation models transport, gives h
The perturbed drift kinetic equation used to find 𝒉 is: 

Drive from perturbation and 
alpha spatial gradient

•v5 is radial velocity caused by perturbation (𝐸×𝐵
drift + grad 𝐵 drift + changed B field direction)

•67#
63

is the alpha spatial gradient 
•𝐺 𝜗 gives poloidal variation in strength of 
transport

𝑓 8
/𝑓
8(
𝜓
=
0)

⁄𝜓 𝜓9

𝐯𝒓

Alpha spatial distribution

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(
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Drift kinetic equation models transport, gives h
The perturbed drift kinetic equation used to find 𝒉 is: 

Pitch angle scattering of alpha 
particles

•Pitch angle is the angle between a particle’s velocity 
and the background magnetic field

•Represented by 𝜆 ≡ 1#:$
%

1:%

•Frequency of pitch angle scatter is 𝜈;<=

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
𝜕𝑓$
𝜕𝑟

𝐺 𝜗 = 𝜈%&'
𝜕(ℎ
𝜕𝜆(
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Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Moved radially by 
perturbation at velocity 

v3 for time 𝛿𝑡

Phenomenological estimate of transport is possible

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#

𝜕𝑓$
𝜕𝑟 𝐺 𝜗 = 𝜈%&'

𝜕(ℎ
𝜕𝜆(
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Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Estimate of fraction of particles in resonance (𝜹𝝀)

𝒏𝝎𝜶𝜹𝝀 ∼
𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝒏𝝎𝜶

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

Phenomenological estimate of transport is possible

Moved radially by 
perturbation at velocity 

v3 for time 𝛿𝑡

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#

𝜕𝑓$
𝜕𝑟 𝐺 𝜗 = 𝜈%&'

𝜕(ℎ
𝜕𝜆(
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Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Estimate of radial step (𝐯𝒓𝜹𝒕)

𝜹𝒕 ∼
𝟏
𝝂𝒆𝒇𝒇

∼
𝜹𝝀𝟐

𝝂𝒑𝒂𝒔
→ 𝐯𝒓𝜹𝒕 ∼

𝐯𝒓
(𝒏𝝎𝜶) 𝟐/𝟑𝝂𝒑𝒂𝒔

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 shortens step size

Phenomenological estimate of transport is possible

Moved radially by 
perturbation at velocity 

v3 for time 𝛿𝑡

Estimate of fraction of particles in resonance (𝜹𝝀)

𝒏𝝎𝜶𝜹𝝀 ∼
𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝒏𝝎𝜶

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#

𝜕𝑓$
𝜕𝑟 𝐺 𝜗 = 𝜈%&'

𝜕(ℎ
𝜕𝜆(



25JPP | January 2021 |

Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Estimate of radial step (𝐯𝒓𝜹𝒕)

𝜹𝒕 ∼
𝟏
𝝂𝒆𝒇𝒇

∼
𝜹𝝀𝟐

𝝂𝒑𝒂𝒔
→ 𝐯𝒓𝜹𝒕 ∼

𝐯𝒓
(𝒏𝝎𝜶) 𝟐/𝟑𝝂𝒑𝒂𝒔

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 shortens step size

Phenomenological estimate of transport is possible

Moved radially by 
perturbation at velocity 

v3 for time 𝛿𝑡

Estimate of fraction of particles in resonance (𝜹𝝀)

𝒏𝝎𝜶𝜹𝝀 ∼
𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝒏𝝎𝜶

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#

𝜕𝑓$
𝜕𝑟 𝐺 𝜗 = 𝜈%&'

𝜕(ℎ
𝜕𝜆(
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Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Estimate of overall diffusivity (𝑫)

𝑫 ∼ 𝜹𝝀
𝐯𝒓𝜹𝒕 𝟐

𝜹𝒕 ∼
𝐯𝒓𝟐

𝒏𝝎𝜶

• D has no explicit 𝝂𝒑𝒂𝒔 dependence

• D increases with 𝐯𝒓𝟐 ∝ 𝑩𝒎𝒏𝝎𝟐

Phenomenological estimate of transport is possible

Moved radially by 
perturbation at velocity 

v3 for time 𝛿𝑡

Estimate of fraction of particles in resonance (𝜹𝝀)

𝒏𝝎𝜶𝜹𝝀 ∼
𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝒏𝝎𝜶

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

v∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#

𝜕𝑓$
𝜕𝑟 𝐺 𝜗 = 𝜈%&'

𝜕(ℎ
𝜕𝜆(

Estimate of radial step (𝐯𝒓𝜹𝒕)

𝜹𝒕 ∼
𝟏
𝝂𝒆𝒇𝒇

∼
𝜹𝝀𝟐

𝝂𝒑𝒂𝒔
→ 𝐯𝒓𝜹𝒕 ∼

𝐯𝒓
(𝒏𝝎𝜶) 𝟐/𝟑𝝂𝒑𝒂𝒔

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 shortens step size



Evaluation of transport



28JPP | January 2021 |

Rigorous evaluation integrates over particle trajectory

• Particle orbit is a series of bounces (trapped
particles) or transits (passing particles)

• Integrate drift kinetic equation over bounce or
transit to get h

• D is proportional to h times velocity outwards,
v" [Image source: Kadomtsev

and Pogutse 1971]

(passing particle transit 
continues onward) 
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Rigorous evaluation integrates over particle trajectory
Estimate of overall diffusivity (𝑫)

𝑫 ∼ 𝜹𝝀
𝐯𝒓𝜹𝒕 𝟐

𝜹𝒕
∼

𝐯𝒓𝟐

𝒏 𝝎𝜶

𝐷 ∝L𝑑v 𝑑𝜆 𝑔 v, 𝜆 vA+
𝜈K""𝜏L

𝜔𝜏L − 𝑛𝜔M 𝜏L − 2𝜋𝑙 + + 𝜈K""+ 𝜏L+
× 𝑃N+

(trapped	particles;	passing	particle	expression	is	similar)

Integration of drift 
kinetic equation 

• 𝜈!"" ∼
#()*
$%+

∼ (𝑛𝜔&) '/)𝜈*+,
-/)

• 𝜔& is the average value of 𝜔& ; 𝜏. is the bounce or transit time

• 𝑃/' is a phase factor that results from integration over trajectory
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Rigorous evaluation integrates over particle trajectory

• For some values of 𝜆 𝑣 ,𝜔𝜏! − 𝑛𝜔"𝜏! − 2𝜋𝑙 vanishes

• These are resonant velocities

• Recall drift kinetic equation: v∥ "𝑏 $ 𝛻𝜗 )*
)+

− 𝑖 𝜔 − 𝑛𝜔" ℎ + 𝑖v#
),1
)-
𝑃(𝜗) = 𝜈%&'

)2*
).2

• At resonant velocities, the averaged value of the blue terms vanishes up to 2 𝜋𝑙

𝐷 ∝L𝑑v 𝑑𝜆 𝑔 v, 𝜆 vA+
𝜈K""𝜏L

𝜔𝜏L − 𝑛𝜔M 𝜏L − 2𝜋𝑙 + + 𝜈K""+ 𝜏L+
× 𝑃N+
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Without collisionality, resonance is unresolved

• v∥ "𝑏 $ 𝛻𝜗 67
6*

− 𝑖 𝜔 − 𝑛𝜔8 ℎ + 𝑖v9
6:0
6;
𝑃(𝜗) = 𝜈<=>

617
6?1

• Collisionality resolves resonance

(𝜔𝜏B − 𝑛𝜔4𝜏B − 2𝜋𝑙 )[𝜆]

Particle response to perturbation (integrand above), 
𝜈!"" = 0 00

𝐷 ∝L𝑑v 𝑑𝜆 𝑔 v, 𝜆 vA+
𝜈K""𝜏L

𝜔𝜏L − 𝑛𝜔M 𝜏L − 2𝜋𝑙 + + 𝜈K""+ 𝜏L+
× 𝑃N+
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Collisionality resolves resonance

• v∥ "𝑏 $ 𝛻𝜗 67
6*

− 𝑖 𝜔 − 𝑛𝜔8 ℎ + 𝑖v9
6:0
6;
𝑃(𝜗) = 𝜈<=>

617
6?1

• Delta function becomes Lorentzian

• Width 𝛿𝜆 ∼ @234
%,5

6
7 ∼ @899

%,5

• Sharp variation of ℎ with respect to 𝜆 explains
importance of pitch angle scattering 𝜈<=>

617
6?1

• Consistent with causality

Particle response to perturbation (integrand above), 
𝜈!"" increasing from zero

0

𝐷 ∝L𝑑v 𝑑𝜆 𝑔 v, 𝜆 vA+
𝜈K""𝜏L

𝜔𝜏L − 𝑛𝜔M 𝜏L − 2𝜋𝑙 + + 𝜈K""+ 𝜏L+
× 𝑃N+

(𝜔𝜏B − 𝑛𝜔4𝜏B − 2𝜋𝑙 )[𝜆]
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Particles moving in phase with perturbation resonate 

• Integration reveals resonance condition
• 𝜔𝜏L − 𝑛𝜔M𝜏L − 2𝜋𝑙 = 0
• Particles that drift in resonance with 𝜔, 𝑛 participate in transport

Image credit: 
Heidbrink APS 2007

[Image source: Kadomtsev
and Pogutse 1971]

(passing particle transit 
continues onward) 
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Phase factor reduces effect of high 𝑙 + (𝑛𝑞 − 𝑚)

• Rigorous integration gives a “phase factor” 𝑃)/ ∼
0

)1(345-) 4
• More discussion of phase factors found in paper
• They are a lot more complicated than ∼ $

%&(()*+) C

• Higher values of 𝑙 + (𝑛𝑞 − 𝑚) get “washed out”

• Contribute very little transport

𝐷 ∝L𝑑v 𝑑𝜆 𝑔 v, 𝜆 vA+
𝜈K""𝜏L

𝜔𝜏L − 𝑛𝜔M 𝜏L − 2𝜋𝑙 + + 𝜈K""+ 𝜏L+
× 𝑃N+
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Ripple resonance structure shows phase factor is small

• Ripple resonances have low to
moderate 𝑙

• For ripple, 𝑛𝑞 is very high (≈ 60)

• Phase factor 𝑃#$ ∼
%

#&(()*+) .
is

very small

• Negligible transport

• Significant transport still
possible via mechanisms outside
this theory

𝜅
=

1
−

1
−
𝜖
𝜆

2𝜖
𝜆

Trapped particle ripple resonance structure, SPARC-like parameters
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TAE resonance structure shows phase factor is high
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Trapped particle TAE resonance structure, SPARC-like parameters

𝜅
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1
−

1
−
𝜖
𝜆

2𝜖
𝜆

• TAE resonances have low to
moderate 𝑙

• For TAE, 𝑛𝑞 −𝑚 = 1/2

• Phase factor 𝑃)/ ∼
0

)1(345-) 4
is

large

• Significant transport



Strength of TAE transport
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Evaluation agrees with phenomenological estimate

• Full evaluation of 𝐷 integral gives:

• Compare to estimate 𝐷 ∼ -6.

(.7

• 𝜖 = !
"
fraction of particles are trapped

𝐷*+,--./ ∼ 𝜖
v01

𝑛𝜔2

𝐷-,33456 ∼
v01

𝑛𝜔2
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Diffusivity is significant, grows with amplitude squared

• 𝐷 is normalized with slowing
down time 𝜏7 and device minor
radius 𝑎

• Plot shows normalized 𝐷 as
function of TAE amplitude at
SPARC-like parameters
• R = 1.85 m, n = 10, 𝜔 ≈
2×10# 𝑠$%, v& ≈ 8 ×10# '

(

v8 ∼ v9
𝐵-3:
𝐵 Diffusivity

𝐷𝜏3
𝑎4

𝐵567
𝐵

[1089]

𝐷;"<((*+ ∼ 𝜖
v8/

𝑛𝜔!

𝐷(<77.3= ∼
v8/

𝑛𝜔!
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Experimental literature shows similar trends

• Because of specialized form of alpha
distribution, can’t definitively validate
theory until DT

• Multiple types of energetic particle
transport observed in modern
experiments

• Diffusive transport is observed

Energetic particle flux from EPMs in the 
Compact Helical System 

(from Nagaoka et al. PRL 2008)
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Saturation condition needed to determine diffusion

• 𝐷 is normalized with slowing
down time 𝜏7 and device minor
radius 𝑎

• Plot shows normalized 𝐷 as
function of TAE amplitude at
SPARC-like parameters
• R = 1.85 m, n = 10, 𝜔 ≈
2×10# 𝑠$%, v& ≈ 8 ×10# '

(

v8 ∼ v9
𝐵-3:
𝐵 Diffusivity

𝐷𝜏3
𝑎4

𝐵567
𝐵

[1089]

𝐷;"<((*+ ∼ 𝜖
v8/

𝑛𝜔!

𝐷(<77.3= ∼
v8/

𝑛𝜔!
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Saturation condition balances flattening with refilling 

• Saturation estimated in many
ways throughout literature
(wave trapping, nonlinear mode
couplings, etc.)

• One simple method balances
nonlinear drive reduction with
collisional refilling

𝑓P0
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Saturation condition balances flattening with refilling 

• Saturation estimated in many
ways throughout literature
(wave trapping, nonlinear mode
couplings, etc.)

• One simple method balances
nonlinear drive reduction with
collisional refilling

v!
"DEF
#

$%
$&
∼ 𝜈'()

$C%
$*C

𝑓P0
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Saturation condition suggests insignificant diffusion

Diffusivity

𝐷𝜏3
𝑎4

𝐵567
𝐵

[1089]

• At the amplitude predicted by
simple condition, diffusion is
insignificant

• Caveats:

• Coupling with other m will
change D

• Saturation amplitudes in the
literature can be as large as 100 x
ours

• Onset of full stochasticity at
higher amplitude could further
enhance transport
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Conclusions

• Alpha transport by tokamak perturbations can be calculated drift kinetically

• Drift kinetic calculation, plus simple saturation estimate, suggests TAE transport in 
SPARC-like tokamak could be small

• Caveat: saturation at a higher level, possibly accompanied by onset of stochasticity, 
could lead to significant transport
• Strong motivation for experimental exploration, numerical simulations! 
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