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Multiple upcoming tokamak experiments will run DT plasmas

Rendering of the SPARC tokamak
Source: CFS/MIT-PSFC - CAD Rendering by T. 

Henderson

The Joint European Torus (JET) chamber
Source: CCFE

Rendering of the ITER tokamak
Source: ITER Organization, http://www.iter.org/ 

• A series of upcoming tokamak experiments plan to run with DT fuel
• JET DT campaign
• SPARC
• ITER
• First DT experiments since the 1990’s
• (with exception of trace tritium experiments)
• Exciting plasma physics motivates new attention to relevant theory
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Alpha physics is novel part of next-generation DT tokamaks

• One novel, important part of DT tokamak physics is alpha
particle behavior

• Alphas heat bulk plasma, help maintain its temperature

• For SPARC primary reference plasma: 𝑃! ≈ 28 MW ,
𝑃"#,%&'()*+ + 𝑃&,-.% ≈ 12.8 MW [Creely et al. DPP 2020]

• Alphas can interact with perturbations to tokamak electric
and magnetic fields, causing transport
• Transport can modify heat deposition
• Loss can degrade performance, damage device
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Unperturbed alpha distribution is peaked in core

• Unperturbed alpha population given by slowing down distribution:

• Many alphas toward core; few towards edge

Parameter	definitions
𝑆!"#:	fusion	rate

𝐻(𝑣 − 𝑣$):	Heaviside	step	function
𝑣% :	critical	speed

𝜏# ∼ 𝑇&
!
"/𝑛&: slowing	down	time

𝑓! 𝑣, 𝜓 =
𝑆"#$ 𝜓 𝜏$ 𝜓 𝐻(𝑣 − 𝑣%)

4 𝜋 𝑣& + 𝑣'&(𝜓)

𝑆"#$𝜏$ = 𝑛(𝑛) 𝜎𝑣 𝜏$ ∝ 𝑛𝑇*/,

𝑓 !
/𝑓
!
(𝜓

=
0)

⁄𝜓 𝜓"

High bulk 𝑛, 𝑇
gives high alpha 

density
Low bulk 𝑛, 𝑇
gives low alpha 

density
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Interaction of alphas and perturbations leads to transport

• Tokamak fields experience a variety of
perturbations
• Ripple
• MHD modes (Alfvén eigenmodes, NTMs, etc.)
• RMP coils

• These perturbations create perturbed:
• Alpha distribution: 𝑓B
• Alpha radial velocity: 𝑣CD

• Leads to transport of alphas from core to edge
• Excessive transport could lead to loss of
necessary alpha heat or to damage to device 𝑓 !

/𝑓
!
(𝜓

=
0)

⁄𝜓 𝜓"

Schematic flattening 
due to anomalous 
alpha transport

[Image sources: Mumgaard APS 2018 + Snicker et al. NF 2013]
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• In a tokamak, Alfvén waves can exist as eigenmodes (AEs)

• AEs exist at discrete frequencies
• 𝜔)-. =

/!
,01

This presentation focuses on Alfvén eigenmode transport

Image credit: Heidbrink APS 
2007
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TAE gap

Continuum spectrum• AEs driven by spatial gradient of alpha population 
through resonance with alpha orbits
• Resonant speed depends on harmonic and particle pitch 

angle, increases with with Alfvén speed
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We develop drift kinetic theory of transport

• Theory of alpha transport by perturbations focuses on single alpha trajectories

• Codes used to study alpha distribution

We develop a drift kinetic theory for 𝑫, the diffusivity caused by 
TAEs, as a function of local TAE characteristics

•Can also be used to model transport from other perturbations (other AEs, ripple, etc.) 
•See Tolman and Catto In Review (available on arXiv:2011.04920)
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• TAE includes magnetic field and electric field perturbations

Image credit: Heidbrink APS 
2007

TAEs include electric and magnetic field perturbations

Electric potential is given by:

Φ!= Φ"#$𝑒%(# '(")($*)𝑒
%∫ -.

/!
01"

Magnetic vector potential is given by:

𝐴∥!=
𝑐Φ"#$
𝑣3

𝑒%(# '(")($*)𝑒
%∫ -.

/!
01" '𝑏

Amplitude Wave 
phase

Radial 
variation
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Image credit: Heidbrink APS 
2007

Multiple TAEs work together to cause transport

• In realistic tokamak, multiple poloidal harmonics per
TAE and multiple TAEs

• TAEs at different radial locations work together to
cause transport across cross section

• For perturbations with significant radial overlap:

𝑛 ≠ 𝑛′ 𝑛 = 𝑛#, 𝑚 ≠ 𝑚′
• Transport does not couple
• Diffusion is superimposed

• Transport couples for similar 𝑚
• Difficult to treat analytically
• See discussion in paper
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• TAE includes magnetic field and electric field perturbations

• TAE creates a corresponding perturbation to 𝑓!

Image credit: Heidbrink APS 
2007

Alpha distribution develops similar perturbation

𝑓! =
𝑍𝑒 Φ!
𝑀

𝜕𝑓4
𝜕ℰ

+ ℎ(𝜗)𝑒%[# ('(6 ))($*]𝑒
%∫ -.

/!
01"

Adiabatic response, 
ℰ is energy

Response that causes 
transport

Electric potential is given by:

Φ!= Φ"#$𝑒%(# '(")($*)𝑒
%∫ -.

/!
01"

Magnetic vector potential is given by:

𝐴∥!=
𝑐Φ"#$
𝑣3

𝑒%(# '(")($*)𝑒
%∫ -.

/!
01" '𝑏
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 

Streaming of unperturbed alpha 
orbit along magnetic field

[Image source: 
Kadomtsev and Pogutse

1971]
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 

TAE frequency
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 

Toroidal mode number
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 

[Image source: 
Kadomtsev and Pogutse

1971]

Drift of unperturbed alpha orbit in 
flux surface
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 

Drive from TAE and alpha 
spatial gradient

•𝑣$% is radial velocity caused by TAE (𝐸×𝐵 drift + 
changed B field direction)

•&'!
&(

is the alpha spatial gradient 
•Other terms give poloidal variation in strength of 
transport

𝑓 !
/𝑓
!
(𝜓

=
0)

⁄𝜓 𝜓"

𝒗𝑨𝑬

Alpha spatial distribution
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Drift kinetic equation models transport, gives h

𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗

− 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$
𝜕𝑓%
𝜕𝑟

1 −
𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

The perturbed drift kinetic equation used to find 𝒉 is: 

Pitch angle scattering of alpha 
particles

•Pitch angle is the angle between a particle’s velocity 
and the background magnetic field

•Represented by 𝜆 ≡ )"*#
$

)*$

•Frequency of pitch angle scatter is 𝜈+,-
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𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$

𝜕𝑓%
𝜕𝑟 1 −

𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Moved radially by TAE 
at velocity 

𝑣./ for time 𝛿𝑡

Phenomenological estimate of transport is possible
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𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$

𝜕𝑓%
𝜕𝑟 1 −

𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Moved radially by TAE 
at velocity 

𝑣./ for time 𝛿𝑡

Estimate of fraction of particles in resonance (𝜹𝝀)

𝝎𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝝎

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

Phenomenological estimate of transport is possible
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𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$

𝜕𝑓%
𝜕𝑟 1 −

𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Moved radially by TAE 
at velocity 

𝑣./ for time 𝛿𝑡

Estimate of fraction of particles in resonance (𝜹𝝀)

𝝎𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝝎

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

Estimate of radial step (𝒗𝑨𝑬𝜹𝒕)

𝜹𝒕 ∼
𝜹𝝀𝟐

𝝂𝒑𝒂𝒔
→ 𝒗𝑨𝑬𝜹𝒕 ∼

𝒗𝑨𝑬
𝝎 𝟐/𝟑𝝂𝒑𝒂𝒔

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 shortens step size

Phenomenological estimate of transport is possible
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𝑣∥ "𝑏 $ 𝛻𝜗
𝜕ℎ
𝜕𝜗 − 𝑖 𝜔 − 𝑛𝑣" $ 𝛻 𝜁 − 𝑞 𝜗 ℎ + 𝑖𝑣#$

𝜕𝑓%
𝜕𝑟 1 −

𝑣∥
𝑣&

𝑒
' ()*+ ,-

.!/∥
0# = 𝜈123

𝜕4ℎ
𝜕𝜆4

Some particle pitch angles 
(fraction = 𝛿𝜆)  are resonant

Decorrelate via 
pitch angle 

scatter

Moved radially by TAE 
at velocity 

𝑣./ for time 𝛿𝑡

Estimate of fraction of particles in resonance (𝜹𝝀)

𝝎𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝜹𝝀𝟐

→ 𝜹𝝀 ∼ 𝝂𝒑𝒂𝒔
𝝎

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 allows more particles to be resonant

Estimate of radial step (𝒗𝑨𝑬𝜹𝒕)

𝜹𝒕 ∼
𝜹𝝀𝟐

𝝂𝒑𝒂𝒔
→ 𝒗𝑨𝑬𝜹𝒕 ∼

𝒗𝑨𝑬
𝝎 𝟐/𝟑𝝂𝒑𝒂𝒔

𝟏/𝟑

Higher 𝝂𝒑𝒂𝒔 shortens step size

Estimate of overall diffusivity (𝑫)

𝑫 ∼ 𝜹𝝀
𝒗𝑨𝑬𝜹𝒕 𝟐

𝜹𝒕 ∼
𝒗𝑨𝑬𝟐

𝝎

• D has no explicit 𝝂𝒑𝒂𝒔 dependence

• D increases with 𝒗𝑨𝑬𝟐 ∝ 𝑩𝒎𝒏𝝎𝟐

Phenomenological estimate of transport is possible
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Rigorous evaluation integrates over particle trajectory

• Particle orbit is a series of
bounces (trapped particles)
or transits (passing particles)

• Integrate drift kinetic equation over
bounce or transit to get h

[Image source: Kadomtsev
and Pogutse 1971]

(passing particle transit 
continues until trajectory 
returns to same poloidal 
position) 
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Rigorous evaluation reveals resonance condition
• Integration reveals resonance condition: particles that drift in

resonance with 𝜔, 𝑛 participate in transport

• Sharp variation of h with respect to 𝜆 explains importance
of pitch angle scattering 𝜈!"#

$+%
$&+

Image credit: 
Heidbrink APS 2007

𝝎− 𝒏𝒗𝒅 C 𝜵 𝜻 − 𝒒 𝝑 𝝀

Distribution response 𝒉 for trapped particles

(harmonic l = 0)

[Image source: Kadomtsev
and Pogutse 1971]

(passing particle transit 
continues until trajectory 
returns to same poloidal 
position) 
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Rigorous evaluation integrates over particle trajectory

• ℎ averaged over flux surface to get 𝐷

• Rigorous evaluation gives:

• Compare to estimate 𝐷 ∼ ',-
+

(

• 𝜖 = !
"
fraction of particles are trapped

𝐷*+,--./ ∼ 𝜖
𝑣012

𝜔

𝐷-,33456 ∼
𝑣012

𝜔
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Diffusivity is significant, grows with amplitude squared

• 𝐷 is normalized with slowing
down time 𝜏/ and device minor
radius 𝑎

• Plot shows normalized 𝐷 as
function of TAE amplitude at
SPARC-like parameters
• R = 1.85 m, n = 10, 𝜔 ≈
2×10# 𝑠$%, 𝑣& ≈ 8 ×10# '

(

𝐷?@ABBCD ∼
E/"#

$

5
,

𝐷BA$$F4G ∼
𝑣HI,

𝜔

𝑣01 ∼ 𝑣2
𝐵-34
𝐵 Diffusivity

𝐷𝜏1
𝑎2

𝐵345
𝐵

[1067]
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Saturation condition balances flattening with refilling 

• Saturation estimated in many
ways throughout literature
(wave trapping, nonlinear mode
couplings, etc.)

• One simple method balances
nonlinear drive reduction with
collisional refilling

𝑓F
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Saturation condition balances flattening with refilling 

• Saturation estimated in many
ways throughout literature
(wave trapping, nonlinear mode
couplings, etc.)

• One simple method balances
nonlinear drive reduction with
collisional refilling

𝑣"
#678
$

%&
%'
∼ 𝜈()*

%9&
%+9

𝑓F
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Saturation condition suggests insignificant diffusion

Diffusivity

𝐷𝜏1
𝑎2

𝐵345
𝐵

[1067]

• At the amplitude predicted by
simple condition, diffusion is
insignificant

• Caveats:

• Coupling with other m will
change D

• Saturation amplitudes in the
literature can be as large as 100 x
ours

• Onset of full stochasticity at
higher amplitude could further
enhance transport



29Tolman | November 2020 |

Conclusions

• Alpha transport by tokamak perturbations can be calculated drift kinetically

• Drift kinetic calculation, plus simple saturation estimate, suggests transport in 
SPARC-like tokamak could be small

• Caveat: saturation at a higher level, possibly accompanied by onset of stochasticity, 
could lead to significant transport
• Strong motivation for experimental exploration! 

Based on Tolman and Catto In Review 2020, available on arXiv:2011.04920
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