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Rendering of the ITER tokamak
Source: ITER Organization, http://www.iter.org

Rendering of the SPARC tokamak
Source: CFS/MIT-PSFC - CAD Rendering by T.

Henderson
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The Joint European Torus (JET) chamber
Source: CCFE

ing tokamak experiments plan to run with DT fuel
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(with exception of trace tritium experiments)
* Exciting plasma physics motivates new attention to relevant theory



Alpha physics is novel part of next-generation DT tokamaks

* One novel, important part of DT tokamak physics is alpha
particle behavior

* Alphas heat bulk plasma, help maintain its temperature

* For SPARC primary reference plasma: P, = 28 MW |,
Pyt couptea T Ponmic = 12.8 MW [Creely et al. DPP 2020]

* Alphas can interact with perturbations to tokamak electric
and magnetic fields, causing transport

* Transport can modify heat deposition
* Loss can degrade performance, damage device
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Unperturbed alpha distribution is peaked in core

* Unperturbed alpha population given by slowing down distribution:

fa(vw l/)) —

) fus (l/)) T (l/)) H (U _ UO) Parameter definitions

Sfust fusion rate

StusTs = Npnp(ov) T X nT7’/?

4 7-[[1)3 + U(}g (1/))] H(v — vy): Heaviside step function

v, : critical speed
3

75 ~ TZ/n,: slowing down time

* Many alphas toward core; few towards edge

fa/fa@P = 0)

0.5;

\

High bulk n, T
gives high alpha

density

Low bulk n, T
gives low alpha

density
02 04 06 08 1.0
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Interaction of alphas and perturbations leads to transport

* Tokamak fields experience a variety of
perturbations
* Ripple
* MHD modes (Alfven eigenmodes, NTMs, etc.)
* RMP coils

[Image sources: Mumgaard APS 2018 + Snicker et al. NF 201 3]

* These perturbations create perturbed:
* Alpha distribution: f; |

* Alpha radial velocity: v ¢ ~
I Schematic flattening
due t [
* Leads to transport of alphas from core to edge 2 o5l a,l:;aot:::s'::,:us
* Excessive transport could lead to loss of Sﬁ
necessary alpha heat or to damage to device W3
O ...............
0.2 0.4 0.6 0.8 1.0
/b
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Resonant speed depends on harmonic and particle pitch

angle, increases with with Alfvén speed

WTAE
AEs driven by spatial gradient of alpha population

through resonance with alpha orbits
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* AEs exist at discrete frequencies
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We develop drift kinetic theory of transport

* Theory of alpha transport by perturbations focuses on single alpha trajectories

* Codes used to study alpha distribution

We develop a drift kinetic theory for D, the diffusivity caused by
TAEs, as a function of local TAE characteristics

*Can also be used to model transport from other perturbations (other AEs, ripple, etc.)
*See Tolman and Catto In Review (available on arXiv:2011.04920)
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TAEs include electric and magnetic field perturbations

* TAE includes magnetic field and electric field perturbations
Electric potential is given by:

- %
CDl: q)mnwei(n (—mﬁ—wt)elf dlpRBp

Amplitude VYVave Radial

phase variation
Magnetic vector potential is given by:

P . J ayp—-
A||1= CFmnw pln (—mﬁ—a)t)elf dl/)Rpr

Uy

Image credit: Heidbrink APS
2007
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Multiple TAEs work together to cause transport

* In realistic tokamak, multiple poloidal harmonics per
TAE and multiple TAEs

* TAEs at different radial locations work together to
cause transport across cross section

* For perturbations with significant radial overlap:

n+n n=n'm#*m

* Transport does not couple KN slelalaelVlsl[S{elaRnallF:Tali11) mage credit: Heidbrink APS
* Diffusion Is superimposed * Difficult to treat analytically 2007
* See discussion In paper
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Alpha distribution develops similar perturbation

* TAE includes magnetic field and electric field perturbations
Electric potential is given by:

- %
CDl: cbmnwei(n (—mﬁ—wt)elf dlpRBp

v
////

Magnetic vector potential is given by:

P . J ayp—-
A||1= CFmnw pln (—mﬁ—a)t)elf dl/)Rpr

Uy

Image credit: Heidbrink APS
2007

* TAE creates a corresponding perturbation to f,

- Ze ®q 0f,

— | i[n ({—q 9)—wt]
f1 YERET: h(9)e e

Adiabatic response, Response that causes
E is energy transport
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:

Streaming of unperturbed alpha
orbit along magnetic field

Kadomtsev and Pogutse
1971]
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:

TAE frequency
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:

Toroidal mode number
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:

Drift of unperturbed alpha orbit in
flux surface

Kadomtsev and Pogutse
1971]
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:

Alpha spatial distribution

Drive from TAE and alpha
spatial gradient VAE
S
. ]
* Vg is radial velocity caused by TAE (E'XB drift + 3. 0.5}
changed B field direction) :3
'aa]:f‘ is the alpha spatial gradient E
* Other terms give poloidal variation in strength of
transport - =
0.2 0.4 0.6 0.8 1.0
Vi /by
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Drift kinetic equation models transport, gives h

The perturbed drift kinetic equation used to find h is:

Pitch angle scattering of alpha
particles

*Pitch angle is the angle between a particle’s velocity
and the background magnetic field

Bosz_

*Represented by A =

Bv?
* Frequency of pitch angle scatter is v,
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Phenomenological estimate of transport is possible

dh fa( U”) [(nq m)9+ ;lsz"] 0%h

wib 79 o5 ~ilw —nvg V(¢ —q )+ ivag (1) = Vpas 573

Some particle pitch angles
(fraction = 0A) are resonant

Moved radially by TAE

at velocity
vap for time Ot

Decorrelate via
pitch angle
scatter
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Phenomenological estimate of transport is possible

K
dh fa( U”) . [(nq m)9+ ;lsz"] 0%h

vb V9 o —ilw—nvg - V({ = qO)]h+ivae—- ” = Vpas 372

Some particle pitch angles Estimate of fraction of particles in resonance (041)

(fraction = 0A) are resonant

Moved radially by TAE

at velocity
vap for time Ot

w82 ~ 2% 57~ (2e)

512 W

Higher v,,,; allows more particles to be resonant

Decorrelate via
pitch angle
scatter
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Phenomenological estimate of transport is possible

U”B - V9

K.V
oh fa (. Vi) i|(na-myo+=5-" 9%h
5 i [w—nv; - V((—qO)]h+ ivisg— ™ ( UA) e p

Some particle pitch angles
(fraction = 0A) are resonant

Moved radially by TAE

at velocity
vap for time Ot

w8l ~ 2% - 51 ~ (

Higher v,,,; allows more particles to be resonant

Decorrelate via V4E

1/3
pas

Higher v, ,, shortens step size

> UAESt ot

pitch angle w 2/3v

scatter
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Phenomenological estimate of transport is possible

U”B - V9

K.V
oh fa (. Vi) i|(na-myo+=5-" 9%h
5 i [w—nv; - V((—qO)]h+ ivisg— 5 ( VA) e p

Some particle pitch angles
(fraction = 0A) are resonant

Moved radially by TAE

at velocity
v, for time Ot

w8l ~ 2% - 51 ~ (

Higher v, ,,; allows more particles to be resonant

Decorrelate via Vag

1/3
pas

Higher v, ,, shortens step size

> UAESt ~

pitch angle w 2/3v

scatter

Estimate of overall diffusivity (D)

(V4 6t)? 2 * D has no explicit vpas dependence
D ~ 62

Ot w » D increases with v5 4p X B2
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Rigorous evaluation integrates over particle trajectory

* Particle orbit is a series of (passing particle transit
bou nces (trapped particles) continues until trajectory
or transits (passing particles)

* Integrate drift kinetic equation over
bounce or transit to get h

[Image source: Kadomtsev
and Pogutse 1971]
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Rigorous evaluation reveals resonance condition

* Integration reveals resonance condition: particles that drift in
resonance with w, n participate in transport (passing particle transit

continues until trajectory

returns to same poloidal

A 1
i),
/ .
/

[Image source: Kadomtsev
and Pogutse 1971]

Distribution response h for trapped particles -
position)

(harmonic | = 0) ’

w—nvg-V({—q9)(4)

Image credit:

* Sharp variation of h with resgzect to A explains importance Heidbrink APS 2007
h

of pitch angle scattering v, ~72
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Rigorous evaluation integrates over particle trajectory

* h averaged over flux surface to get D

* Rigorous evaluation gives:
2

D - VAE
t da ™~ N
rappe o0
2
Do .~ VAE
passing 0
2

* Compare to estimate ) ~ UATE

o .
* JE= = fraction of particles are trapped
N
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Diffusivity is significant, grows with amplitude squared

D \/EUKE
t d :
rappe W . . anw
VL AE 4 p Diffusivity
Dpassing =~
W 0.5
0.4
* D is normalized with slowing
. . . 0.3
down time T¢ and device minor
radius a az 0.2 —— Trapped
--------------------- Passing
, 01 e
* Plot shows normalized D as L -
function of TAE amplitude at 0.0 s
SPARC-like parameters 0 > 4 6 g 10
*R = 18 m n = 10, w= Bmne [1075]
6 .—1 6 M b
2%x10° s+, vy = 8 X10 —
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Saturation condition balances flattening with refilling

* Saturation estimated in many
ways throughout literature

(wave trapping, nonlinear mode
couplings, etc.)

* One simple method balances
nonlinear drive reduction with
collisional refilling
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Saturation condition balances flattening with refilling

* Saturation estimated in many
ways throughout literature

(wave trapping, nonlinear mode
couplings, etc.)

* One simple method balances
nonlinear drive reduction with
collisional refilling

Bimnew Oh 0°h
v — ~ Ve ——
A B 9r pas g,2
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Saturation condition suggests insignificant diffusion

* At the amplitude predicted by
simple condition, diffusion s

ours

insignifican : .
signiticant Diffusivity
 Caveats: i TEE
. . . 04
° Coupllng with other m will | ! Saturation from
change D 0.3 : collisional
D, | i refilling . :
: : : ! : —— Trappe
» Saturation amplitudes in the & %% | <
literature can be as large as 100 x s . g
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* Onset of full stochasticity at
higher amplitude could further
enhance transport
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Conclusions

* Alpha transport by tokamak perturbations can be calculated drift kinetically

* Drift kinetic calculation, plus simple saturation estimate, suggests transport in
SPARC-like tokamak could be small

* Caveat: saturation at a higher level, possibly accompanied by onset of stochasticity,
could lead to significant transport

* Strong motivation for experimental exploration!

Based on Tolman and Catto In Review 2020, available on arXiv:2011.04920
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