H-mode Access and Pedestal Characteristics at High Magnetic Field (7.8 T) in Alcator C-Mod Discharges

E.A. Tolman¹, J.W. Hughes¹, P. Snyder², S. Wolfe¹, A. Hubbard¹, S. Wukitch¹, B. LaBombard¹, and the Alcator C-Mod team

¹MIT Plasma Science and Fusion Center, Cambridge, MA, USA

²General Atomics, San Diego, CA, USA

Friday, April 28, 2017

US/EU TTF 2017, Williamsburg, VA

Supported by National Science Foundation Graduate Research Fellowship and by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE Office of Science User Facility

H-mode at high B (7.8 T) merits increased analysis

- High magnetic field tokamak concepts (e.g. ARC, 9.2 T [1]) create a path to compact, less expensive reactors
- Experience with tokamak operation predominantly developed at lower magnetic field and lower values of pedestal pressure
- Set of experiments in last Alcator C-Mod run campaign elucidate behavior of:
 - I-mode at 7.8 T [2]
 - Super H-mode at 5.4 T— J.W. Hughes, Wednesday A.M.
 - H-mode threshold power at 7.8 T
 - H-mode regime access at 7.8 T
 - Pedestal parameters (height, width) at 7.8 T
- Results seen to be broadly consistent with experience at lower field

^[2] A. E. Hubbard, et al., submitted to Nuclear Fusion

H-mode Threshold Power at 7.8 T

H-mode threshold physics depends on B 🎾

'MHD

dt

 L-H confinement transition occurs at threshold value, P_{th}, of loss power:

$$P_{Loss} = P_{OH} + P_{AUX} - \frac{av}{2}$$

- ITPA scaling reads [1]: $P_{th} \sim n_e^{0.7} B^{0.8} S^{0.9}$
- At fixed B and size, "low density branch" where P_{th} increases below characteristic value $n_{th,min}$:
 - *E_r* well is created by ion pressure gradient, but electrons are preferentially heated
 - Ryter scaling law for location of $n_{th,min}$ reads [2]:

 $n_{th,min} [10^{20} m^{-3}] \approx .07 I_p^{0.34} B_T^{0.62} a^{-0.95} {(R/a)}^{0.4}$

$P_{th}(\overline{n_e})$ for JET shots from 2.5 to 2.8 T [1]

^[1] Y.R. Martin, et. al., J. Phys.: Conf. Ser., 123 (2008).

^[2] F. Ryter, et. al., Nuclear Fusion 54 (2014).

Previous C-Mod work at lower B explores scaling law behavior

[1] Y Ma, et. al., Nuclear Fusion 52, 378 (2012).

Set of shots at 7.8 T analyzed to determine P_{th}

- Set of 26 shots from 2016 run campaign at 7.8 T analyzed to determine $P_{LOSS} = P_{OH} + P_{AUX} - \frac{dW_{MHD}}{dt}$ at time of L-H transition
- All shots LSN with ion grad-B drift towards X-point
- High B operation requires lower-efficiency D(He³) ICRF heating
- Efficiency estimated by using notch in ICRF power during Lmode

•
$$\eta_{RF} = \frac{dW_{MHD}/dt}{\Delta P_{RF}} = .5$$

•
$$P_{AUX} = \eta_{RF} P_{RF}$$

H-mode transitions at 7.8 T occur near ITPA scaling

-Moa

n_{th,min} at 7.8 T lower than Ryter prediction; similar to 5.4 T value

7.8 T data can guide extrapolations to higher B

- ITPA scaling law well represents data at 7.8 T, and some parts of lower field data
- n_{th,min} seen to increase weakly with magnetic field on C-Mod

H-mode regime access at 7.8 T

11

Standard 7.8 T H-mode was nonstationary ELM-free

- ELM-free H-modes routinely obtained across all C-Mod fields
- These H-modes exhibit a continual rise in density and temperature ending in radiative collapse

ELMy H-modes extended to 7.8 T

Stationary, ELM-suppressed EDA Hmodes extended to 7.8 T

- C-Mod observes the steady state EDA (Enhanced D_α) Hmode at high density and q₉₅
- EDA characterized by quasicoherent mode (QCM)
- EDA H-Mode obtained at high density
 - Elevated P_{th} creates heating challenges at high magnetic field
- First confirmed EDA Hmode at 7.8 T obtained in 2016

Operating space of H-mode regimes at 7.8 T follows lower-B intuition

Operating space of H-mode regimes at 7.8 T follows lower-B intuition

Operating space of H-mode regimes at 7.8 T follows lower-B intuition

H-mode pedestal characteristics at 7.8 T

Pedestal structure quantified using mtanh function

 In order to consistently define pedestal location, width, and height, and baseline, Thomson 5 profiles are fit with:

profiles are fit with:

$$z(r) = \frac{r_0 - r}{\Delta/2}$$

$$mtanh(\alpha, z) = (1 + \alpha z)e^{z} - e^{-z})$$

$$\frac{(1 + \alpha z)e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$k_0^2 = \frac{b+h}{2} + \frac{h-b}{2} mtanh(\alpha, z)$$

$$\psi_N$$
18

ELMy H-mode pressure pedestals constrained by stability

• Kinetic ballooning mode (KBM) onset condition gives condition constraining pedestal width [1]:

 $\Delta_{\psi} = c \beta_{p,ped}^{1/2}$

$$\beta_{p,ped} = \frac{2n_{e,ped}T_{e,ped}}{\mu_0 \langle B_p \rangle^2}$$

Limited previous data suggested narrowing of width at 7.8 T

[1] J. Walk, et. al., Nuclear Fusion, 52 (2012).

20

Coefficient from 5.4 T shots fits 7.8 T data well

- Fit pressure profiles from Thomson measurements immediately before ELM in 7.8 T shots
- Width prediction using coefficient from data at mostly 5.4 T predicts the fit profiles at 7.8 T well
- Narrowing of pedestal suggested in previous work is not seen

EPED couples KBM constraint with peelingballooning stability to predict pedestal

 Previous work has compared EPED predictions with measured pressure up to 5.4 T [1]

Preliminary EPED results extend comparison to 7.8 T

Moa

EDA density pedestals determined by conditions before L-H transition

- EDA pressure pedestals are away from MHD stability boundaries [1]
- EDA pedestal displays characteristic quasicoherent mode, which appears to fix density pedestal after L-H transition
- Density pedestal width previously observed to show little systematic variation with plasma parameters [2]
- J.W. Hughes, et. al., Nuclear Fusion 53 (2013).
 J. W. Hughes, et. al, Physics of Plasmas 9 (2002)

t (s)

24

EDA density pedestal height dependent on magnetic field

- Magnetic fields from 2.7 T to 7.8 T
- q₉₅ from 2.88 to 5.93
- L-mode target density from .95 x 10²⁰ m⁻³ to 2.31 x 10²⁰ m⁻³
- Resulting fit law reads:

 $n_{e,ped}[10^{20}m^{-3}] =$ 3.48 $I_P[MA]^{0.54} \overline{n_{e,L}}[10^{20}m^{-3}]^{0.52} B[T]^{-0.36}$

EDA density pedestal height dependent on magnetic field

- Analyze database of 85 C-Mod steady EDA H-Modes
 - Magnetic fields from 2.7 T to 7.8 T
 - q₉₅ from 2.88 to 5.93
 - L-mode target density from .95 x 10²⁰ m⁻³ to 2.31 x 10²⁰ m⁻³
- Resulting fit law reads:

Conclusions: H-mode behavior at high magnetic field

- Most recent C-Mod run campaign extends H-mode experience at 7.8 T
- L-H transitions
 - L-H transitions at 7.8 T occur around ITPA scaling
 - Density corresponding to lowest P_{th} increases with magnetic field
- H-mode type
 - All types of H-mode routinely obtained on C-Mod can be obtained at 7.8 T
 - These types live in expected parameter space
- Pedestal characteristics
 - No evidence of ELMy pressure pedestal narrowing at high B
 - EDA scaling displays magnetic field dependence

Thomson scattering system

- Two Nd:YAG lasers fired vertically through machine
- Each laser is 50 Hz, so with full operationality the overall measurement is 100 Hz
- Scattered light collected by core and edge fibers running to polychromators
- Scattering volumes shown by green dots at right
- Vertical locations mapped to midplane by EFIT equilibrium reconstruction code

