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 Coupled with copper trim colls located close to the
plasma, provide plasma position control.
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Neutron spectrum is at midplane of main chamber and midplane of divertor foot. Location within
vacuum vessel layers is shown by black and red boxes respectively.

Optically transparent FLiBe blanket and long-leg divertor open new diagnostic, control opportunities |Accompanying publication: |
This poster is based on the publication Kuang, A.Q. et al. (2018) Fusion

Engr. and Design. Vol. 137, available at link corresponding to QR code.
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* Most plasma diagnostics cannot be used In reactors due to neutron
environment and prevention of access by solid neutron blankets.

* ARC’s unique features allow use of reactor-relevant diagnostics.

* Transparent FLiBe allows thermal imaging of the VV. Optics
can be located behind shielding.

* FLiBe acts as a scintillator for fusion neutrons. Fast neutrons Target

moving in FLiBe generate fast free electrons. Those moving faster than the local speed of light produce Cherenkov radiation. A(;knowle_d_qementsr | S
: : C .. .. : . 3 This work originated from an MIT Nuclear Science and Engineering graduate
* Microwave reflectometry/interferometry can detect ionization front location in long-legged divertor. The front location moves course. The authors would like to acknowledge the support of the NSE

with changes In divertor heat flux, allowing feedback control of divertor heat flux. department and the Plasma Science and Fusion Center.
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